CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Optimizing the k-NN metric weights using differential evolution
Authors
A Al-Ani
A AlSukker
R Khushaba
Publication date
1 June 2010
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Traditional k-NN classifier poses many limitations including that it does not take into account each class distribution, importance of each feature, contribution of each neighbor, and the number ofinstances for each class. A Differential evolution (DE) optimization technique is utilized to enhance the performance of k-NN through optimizing the metric weights of features, neighbors and classes. Several datasets are used to evaluate the performance of the proposed DE based metrics and to compare it to some k-NN variants from the literature. Practical experiments indicate that in most cases, incorporating DE in k-NN classification can provide more accurate performance. ©2010 IEEE
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 21/07/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017