CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Image segmentation for surface material-type classification using 3D geometry information
Authors
D Liu
G Paul
AWK To
Publication date
1 June 2010
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
This paper describes a novel approach for the segmentation of complex images to determine candidates for accurate material-type classification. The proposed approach identifies classification candidates based on image quality calculated from viewing distance and angle information. The required viewing distance and angle information is extracted from 3D fused images constructed from laser range data and image data. This approach sees application in material-type classification of images captured with varying degrees of image quality attributed to geometric uncertainty of the environment typical for autonomous robotic exploration. The proposed segmentation approach is demonstrated on an autonomous bridge maintenance system and validated using gray level co-occurrence matrix (GLCM) features combined with a naive Bayes classifier. Experimental results demonstrate the effects of viewing distance and angle on classification accuracy and the benefits of segmenting images using 3D geometry information to identify candidates for accurate material-type classification. ©2010 IEEE
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Ficinfa.2010...
Last time updated on 21/07/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017