Simultaneous Determination of Nine Chlorogenic Acids and Flavonoids in Mori Folium by QAMS

Abstract

Objective: To establish a HPLC method for the determination of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, isoquercitrin, isochlorogenic acid B, astragalin, isochlorogenic acid A and isochlorogenic acid C in Mori Folium using the quantitative analysis of multi-components by single marker (QAMS). Methods: The analysis was performed on an Agilent TC-C18 column (250 mm×4.6 mm, 5 μm), with acetonitrile (A)-0.1% phosphoric acid (B) as mobile phase at the flow rate of 1.0 mL/min for gradient elution, as well as the wavelengths were 260 and 320 nm and the column temperature was 30 ℃. The chlorogenic acid was used as the internal reference. The contents of nine components in Mori Folium were calculated by the external standard method and QAMS (multi-point correction, gradient correction and single-point correction) respectively, and the differences among the four methods were compared. In addition, the accuracy and feasibility of the method were verified by using multi-point correction and two-point correction to locate chromatographic peaks of the components. Results: The relative correction factors of neochlorogenic acid, cryptochlorogenic acid, rutin, isoquercitrin, isochlorogenic acid B, asiaticoside, isochlorogenic acid A and isochlorogenic acid C to chlorogenic acid were 0.9072, 0.8736, 0.6207, 0.8547, 1.1936, 0.5501, 1.4369 and 1.2244, respectively (multi-point correction). The durability (RSD<1.5%) and the reproducibility (RSD<5%) of the relative correction factors were positive under different conditions. The content of nine components in Mori Folium was determined simultaneously by the external standard method and QAMS (multi-point correction, gradient correction and single-point correction), and there was no difference between the results obtained from the four calculation methods (RSD<1.5%). Compared to the relative retention time, multi-point correction and two-point correction could improve the accurate localization of the chromatographic peaks (relative error |RE|<3%). Conclusion: The method of QAMS for nine components determination in Mori Folium was established, which was accurate and feasible and could be applied for the quality control of Mori Folium

    Similar works