research

Orthogonal Representations, Projective Rank, and Fractional Minimum Positive Semidefinite Rank: Connections and New Directions

Abstract

Fractional minimum positive semidefinite rank is defined from r-fold faithful orthogonal representations and it is shown that the projective rank of any graph equals the fractional minimum positive semidefinite rank of its complement. An r-fold version of the traditional definition of minimum positive semidefinite rank of a graph using Hermitian matrices that fit the graph is also presented. This paper also introduces r-fold orthogonal representations of graphs and formalizes the understanding of projective rank as fractional orthogonal rank. Connections of these concepts to quantum theory, including Tsirelson's problem, are discussed

    Similar works