BACKGROUND: Epileptogenesis and glioma growth have a bidirectional relationship. We hypothesized people with gliomas can benefit from the removal of epileptic tissue and that tumor-related epileptic activity may signify tumor infiltration in peritumoral regions. We investigated whether intraoperative electrocorticography (ioECoG) could improve seizure outcomes in oncological glioma surgery, and vice versa, what epileptic activity (EA) tells about tumor infiltration. METHODS: We prospectively included patients who underwent (awake) ioECoG-assisted diffuse-glioma resection through the oncological trajectory. The IoECoG-tailoring strategy relied on ictal and interictal EA (spikes and sharp waves). Brain tissue, where EA was recorded, was assigned for histopathological examination separate from the rest of the tumor. Weibull regression was performed to assess how residual EA and extent of resection (EOR) related to the time-to-seizure recurrence, and we investigated which type of EA predicted tumor infiltration. RESULTS: Fifty-two patients were included. Residual spikes after resection were associated with seizure recurrence in patients with isocitrate dehydrogenase (IDH) mutant astrocytoma or oligodendroglioma (HR = 7.6[1.4-40.0], P-value = .01), independent from the EOR. This was not observed in IDH-wildtype tumors. All tissue samples resected based on interictal spikes were infiltrated by tumor, even if the MRI did not show abnormalities. CONCLUSIONS: Complete resection of epileptogenic foci in ioECoG may promote seizure control in IDH-mutant gliomas. The cohort size of IDH-wildtype tumors was too limited to draw definitive conclusions. Interictal spikes may indicate tumor infiltration even when this area appears normal on MRI. Integrating electrophysiology guidance into oncological tumor surgery could contribute to improved seizure outcomes and precise guidance for radical tumor resection