We have refined and quantitatively explored a valence-fluctuation pairing mechanism, the finite-U mechanism introduced by Newns. This can provide an s-like (nodeless) gap. We use an Anderson-lattice Hamiltonian, with realistic parameter values derived from photoemission and BIS data. The Landau-Luttinger quasiparticle spectrum and the pairing interaction are obtained from a many-body variational formalism. Adequate pairing attraction is obtained, together with band narrowing (mass enhancement) and an extremely short coherence length, in reasonable agreement with experiment. These fully self-consistent results were obtained with an isotropic approximation to the band structure of a single CuO[sub 2] plane. Now, using a simplified treatment for a more realistic band structure, we find that the gap has strong in-plane anisotropy, although it should probably still remain nodeless. This conclusion is consistent with a variety of data