qq-variational H{\"o}rmander functional calculus and Schr{\"o}dinger and wave maximal estimates

Abstract

This article is the continuation of the work [DK] where we had proved maximal estimates supt>0m(tA)fLp(Ω,Y)CfLp(Ω,Y)\left\|\sup_{t > 0} |m(tA)f| \right\|_{L^p(\Omega,Y)} \leq C \|f\|_{L^p(\Omega,Y)} for sectorial operators AA acting on Lp(Ω,Y)L^p(\Omega,Y) (YY being a UMD lattice) and admitting a H\"ormander functional calculus(a strengthening of the holomorphic HH^\infty calculus to symbols mm differentiable on (0,)(0,\infty) in a quantified manner), and m:(0,)Cm : (0, \infty) \to \mathbb{C} being a H\"ormander class symbol with certain decay at \infty.In the present article, we show that under the same conditions as above, the scalar function tm(tA)f(x,ω)t \mapsto m(tA)f(x,\omega) is of finite qq-variation with q>2q > 2, a.e. (x,ω)(x,\omega).This extends recent works by [BMSW,HHL,HoMa1,HoMa,JSW,LMX] who have considered among others m(tA)=etAm(tA) = e^{-tA} the semigroup generated by A-A.As a consequence, we extend estimates for spherical means in euclidean space from [JSW] to the case of UMD lattice-valued spaces.A second main result yields a maximal estimate supt>0m(tA)ftLp(Ω,Y)CftLp(Ω,Y(Λβ))\left\|\sup_{t > 0} |m(tA) f_t| \right\|_{L^p(\Omega,Y)} \leq C \|f_t\|_{L^p(\Omega,Y(\Lambda^\beta))} for the same AA and similar conditions on mm as above but with ftf_t depending itself on tt such that tft(x,ω)t \mapsto f_t(x,\omega) belongs to a Sobolev space Λβ\Lambda^\beta over (R+,dtt)(\mathbb{R}_+, \frac{dt}{t}).We apply this to show a maximal estimate of the Schr\"odinger (case A=ΔA = -\Delta) or wave (case A=ΔA = \sqrt{-\Delta}) solution propagator texp(itA)ft \mapsto \exp(itA)f.Then we deduce from it variants of Carleson's problem of pointwise convergence [Car]exp(itA)f(x,ω)f(x,ω) a. e. (x,ω)(t0+) \exp(itA)f(x,\omega) \to f(x,\omega) \text{ a. e. }(x,\omega) \quad (t \to 0+)for AA a Fourier multiplier operator or a differential operator on an open domain ΩRd\Omega \subseteq \mathbb{R}^d with boundary conditions.Comment: arXiv admin note: text overlap with arXiv:2203.0326

    Similar works

    Full text

    thumbnail-image

    Available Versions