CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
基于大数据的前列腺癌生物信息学分析
Authors
李志标
Publication date
1 January 2019
Publisher
Editorial Office of Journal of Sun Yat-sen University
Abstract
【目的】利用生物信息学的方法,对GEO和TCGA两个基因组学数据库进行分析,探究与前列腺癌相关的差异基因及相关的调控网络。【方法】综合GEO数据库的前列腺癌基因表达芯片数据(GSE46602、GSE55945)和TCGA数据库的RNA-seq数据,利用GEO2R及R语言的edgeR包进行基因差异分析,获得共同的显著差异基因,结合R语言的clusterProfiler包进行GO功能分析及KEGG通路分析,同时利用string网站进行蛋白互作网络分析,筛选出前列腺癌中调节蛋白表达量的关键基因,再结合TCGA临床随访数据分析关键节点基因的临床预后价值。【结果】获得共同差异基因共278个,其中表达上调100个,表达下调178个,它们与上皮细胞的调节增殖、含苯化合物的代谢过程等功能以及谷胱甘肽代谢和粘着斑等信号通路密切相关。蛋白互作网络分析结果得出3个重点蛋白表达模块以及12个关键节点基因。在这些关键基因中,EDN3、EDNRB和AMACR与前列腺癌患者的生存率密切相关。【结论】通过对前列腺癌基因芯片和RNA-seq数据的生物信息学分析,我们发现EDN3、EDNRB与AMACR很可能在前列腺癌的发生发展过程中发挥重要作用
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:2ebc0ad82...
Last time updated on 15/10/2024