CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Adhesion of Conventional, 3D-Printed and Milled Artificial Teeth to Resin Substrates for Complete Dentures: A Narrative Review
Authors
E.-G. Tzanakakis Pandoleon, P. Sarafianou, A. Kontonasaki, E.
Publication date
1 January 2023
Publisher
Abstract
Background: One type of failure in complete or partial dentures is the detachment of resin teeth from denture base resin (DBR). This common complication is also observed in the new generation of digitally fabricated dentures. The purpose of this review was to provide an update on the adhesion of artificial teeth to denture resin substrates fabricated by conventional and digital methods. Methods: A search strategy was applied to retrieve relevant studies in PubMed and Scopus. Results: Chemical (monomers, ethyl acetone, conditioning liquids, adhesive agents, etc.) and mechanical (grinding, laser, sandblasting, etc.) treatments are commonly used by technicians to improve denture teeth retention with controversial benefits. Better performance in conventional dentures is realized for certain combinations of DBR materials and denture teeth after mechanical or chemical treatment. Conclusions: The incompatibility of certain materials and lack of copolymerization are the main reasons for failure. Due to the emerging field of new techniques for denture fabrication, different materials have been developed, and further research is needed to elaborate the best combination of teeth and DBRs. Lower bond strength and suboptimal failure modes have been related to 3D-printed combinations of teeth and DBRs, while milled and conventional combinations seem to be a safer choice until further improvements in printing technologies are developed. © 2023 by the authors
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3341154
Last time updated on 26/11/2023