Spin and Charge Fluctuation Induced Pairing in ABCB Tetralayer Graphene

Abstract

Motivated by the recent experimental realization of ABCB stacked tetralayer graphene [Wirth et al., ACS Nano 16, 16617 (2022)], we study correlated phenomena in moir\'e-less graphene tetralayers for realistic interaction profiles using an orbital resolved random phase approximation approach. We demonstrate that magnetic fluctuations originating from local interactions are crucial close to the van Hove singularities on the electron- and hole-doped side promoting layer selective ferrimagnetic states. Spin fluctuations around these magnetic states enhance unconventional spin-triplet, valley-singlet superconductivity with ff-wave symmetry due to intervalley scattering. Charge fluctuations arising from long range Coulomb interactions promote doubly degenerate p-wave superconductivity close to the van Hove singularities. At the conduction band edge of ABCB graphene, we find that both spin and charge fluctuations drive ff-wave superconductivity. Our analysis suggests a strong competition between superconducting states emerging from long- and short-ranged Coulomb interactions and thus stresses the importance of microscopically derived interaction profiles to make reliable predictions for the origin of superconductivity in graphene based heterostructures.Comment: 5 pages, 4 figures, supplementary informatio

    Similar works

    Full text

    thumbnail-image

    Available Versions