CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
改进YOLOv5的闪电哨声波轻量化自动检测模型
Authors
冉 子霖
吕 访贤
+5 more
孙 晓英
杨 德贺
泽仁 志玛
申 旭辉
路 超
Publication date
1 June 2024
Publisher
Science Press
Doi
Abstract
提出一种改进YOLOv5(You-Only-Look-Once version 5)检测模型YOLOv5-Upgraded. 为了更快定位真实边框, 该模型将损失函数CIoU (Complete IoU)替换为SIoU(Scylla IoU); 同时为了避免网络训练过程中梯度消失、梯度爆炸以及神经元坏死等现象, 将激活函数SiLU(Sigmoid-weighted Linear Unit)替换为具有更好梯度流的Mish; 在主干网络中插入注意力 (Coordinate Attention, CA)机制, 帮助模型更精准地识别闪电哨声波, 大大降低了漏检率. 基于张衡一号感应磁力仪(Search Coil Magnetometer, SCM)数据, 以2.4 s时间窗口截取数据, 经带通滤波、短时傅里叶变换得到1126张时频图数据集, 再经图像增强操作扩充至7882张, 其中7091张作为训练集, 791张作为测试集. 实验结果表明, 基于改进YOLOv5的模型平均精度均值为99.09%, 召回率为96.20%, 与YOLOv5s相比, 分别提升了2.75%和5.07%, 与基于时频图的YOLOv3模型相比, 平均精度均值和召回率则分别提高了5.89%和9.62%. 基于智能语音的LSTM (Long Short Term Memory Networks)闪电哨声波识别模型大小为82.89 MB, YOLOv5-Upgraded仅为13.78 MB, 约节省83.38%的内存资源. 研究表明改进后的轻量化模型大大降低了闪电哨声波的漏检现象, 在测试集中取得了较好结果, 并且其轻量化特征易于部署到卫星设备, 极大地提高了星载识别的可能性
Similar works
Full text
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:8032ae211...
Last time updated on 04/10/2024