Order-2 Delaunay Triangulations Optimize Angles

Abstract

The local angle property of the (order-1) Delaunay triangulations of a generic set in R2 asserts that the sum of two angles opposite a common edge is less than π. This paper extends this property to higher order and uses it to generalize two classic properties from order-1 to order-2: (1) among the complete level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation lexicographically maximizes the sorted angle vector; (2) among the maximal level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation is the only one that has the local angle property. We also use our method of establishing (2) to give a new short proof of the angle vector optimality for the (order-1) Delaunay triangulation. For order-1, both properties have been instrumental in numerous applications of Delaunay triangulations, and we expect that their generalization will make order-2 Delaunay triangulations more attractive to applications as well

    Similar works