Immobilized Cobalt Affinity Chromatography Provides a Novel, Efficient Method for Herpes Simplex Virus Type 1 Gene Vector Purification

Abstract

Herpes simplex virus type 1 (HSV-1) is a promising vector for gene therapy applications, particularly at peripheral nerves, the natural site of virus latency. Many gene vectors require large particle numbers for even early-phase clinical trials, emphasizing the need for high-yield, scalable manufacturing processes that result in virus preparations that are nearly free of cellular DNA and protein contaminants. HSV-1 is an enveloped virus that requires the development of gentle purification methods. Ideally, such methods should avoid centrifugation and may employ selective purification processes that rely on the recognition of a unique envelope surface chemistry. Here we describe a novel method that fulfills these criteria. An immobilized metal affinity chromatography (IMAC) method was developed for the selective purification of vectors engineered to display a high-affinity binding peptide. Feasibility studies involving various transition metal ions (Cu(2+), Zn(2+), Ni(2+), and Co(2+)) showed that cobalt had the most desirable features, which include a low level of interaction with either the normal virus envelope or contaminating DNA and proteins. The introduction of a cobalt-specific recognition element into the virus envelope may provide a suitable target for cobalt-dependent purification. To test this possibility, we engineered a peptide with affinity for immobilized cobalt in frame in the heparan sulfate binding domain of HSV-1 glycoprotein B, which is known to be exposed on the surface of the virion particle and recombined into the viral genome. By optimizing the IMAC loading conditions and reducing cobalt ion leakage, we recovered 78% of the tagged HSV-1 recombinant virus, with a >96% reduction in contaminating proteins and DNA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019