The tunnelling of cooper pairs across a Josephson junction (JJ) allow for the
nonlinear inductance necessary to construct superconducting qubits, amplifiers,
and various other quantum circuits. An alternative approach using hybrid
superconductor-semiconductor JJs can enable superconducting qubit architectures
with all electric control. Here we present continuous-wave and time-domain
characterization of gatemon qubits and coplanar waveguide resonators based on
an InAs two-dimensional electron gas. We show that the qubit undergoes a vacuum
Rabi splitting with a readout cavity and we drive coherent Rabi oscillations
between the qubit ground and first excited states. We measure qubit relaxation
times to be T1​= 100 ns over a 1.5 GHz tunable band. We detail the loss
mechanisms present in these materials through a systematic study of the quality
factors of coplanar waveguide resonators. While various loss mechanisms are
present in III-V gatemon circuits we detail future directions in enhancing the
relaxation times of qubit devices on this platform