Characterizing losses in InAs two-dimensional electron gas-based gatemon qubits

Abstract

The tunnelling of cooper pairs across a Josephson junction (JJ) allow for the nonlinear inductance necessary to construct superconducting qubits, amplifiers, and various other quantum circuits. An alternative approach using hybrid superconductor-semiconductor JJs can enable superconducting qubit architectures with all electric control. Here we present continuous-wave and time-domain characterization of gatemon qubits and coplanar waveguide resonators based on an InAs two-dimensional electron gas. We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity and we drive coherent Rabi oscillations between the qubit ground and first excited states. We measure qubit relaxation times to be T1=T_1 = 100 ns over a 1.5 GHz tunable band. We detail the loss mechanisms present in these materials through a systematic study of the quality factors of coplanar waveguide resonators. While various loss mechanisms are present in III-V gatemon circuits we detail future directions in enhancing the relaxation times of qubit devices on this platform

    Similar works

    Full text

    thumbnail-image

    Available Versions