Yielding and plasticity in amorphous solids

Abstract

The physics of disordered media, from metallic glasses to colloidal suspensions, granular matter and biological tissues, offers difficult challenges because it often occurs far from equilibrium, in materials lacking symmetries and evolving through complex energy landscapes. Here, we review recent theoretical efforts to provide microscopic insights into the mechanical properties of amorphous media using approaches from statistical mechanics as unifying frameworks. We cover both the initial regime corresponding to small deformations, and the yielding transition marking a change between elastic response and plastic flow. We discuss the specific features arising for systems evolving near a jamming transition, and extend our discussion to recent studies of the rheology of dense biological and active materials.Comment: 20 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions