Bayesian modeling of spatial ordinal data from health surveys

Abstract

Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this paper, we propose a Bayesian individual-level model for small-area estimation of survey-based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive (CAR) distribution. Post-stratification of the results of the proposed individual-level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to the analysis of the Health Survey of the Region of Valencia (Spain) of 2016 to describe the geographical distribution of a self-perceived health indicator of interest in this region

    Similar works

    Full text

    thumbnail-image

    Available Versions