Inverse wave-number-dependent source problems for the Helmholtz equation with partial information on radiating period

Abstract

This paper addresses a factorization method for imaging the support of a wave-number-dependent source function from multi-frequency data measured at a finite pair of symmetric receivers in opposite directions. The source function is given by the inverse Fourier transform of a compactly supported time-dependent source whose initial moment or terminal moment for radiating is unknown. Using the multi-frequency far-field data at two opposite observation directions, we provide a computational criterion for characterizing the smallest strip containing the support and perpendicular to the directions. A new parameter is incorporated into the design of test functions for indicating the unknown moment. The data from a finite pair of opposite directions can be used to recover the Θ\Theta-convex polygon of the support. Uniqueness in recovering the convex hull of the support is obtained as a by-product of our analysis using all observation directions. Similar results are also discussed with the multi-frequency near-field data from a finite pair of observation positions in three dimensions. We further comment on possible extensions to source functions with two disconnected supports. Extensive numerical tests in both two and three dimensions are implemented to show effectiveness and feasibility of the approach. The theoretical framework explored here should be seen as the frequency-domain analysis for inverse source problems in the time domain.Comment: arXiv admin note: text overlap with arXiv:2305.0745

    Similar works

    Full text

    thumbnail-image

    Available Versions