Development of Beef Volatile Flavor Compounds in Response to Varied Oven Temperature and Degree of Doneness

Abstract

Beef volatile flavor compound (VFC) development at the center, mid, and surface layers of cooked steaks was evaluated through 18 cookery treatment combinations consisting of oven cooking temperature (OT; 177°C, 246°C, and 343°C) and final internal steak temperature (IT; 57°C, 63°C, 68°C, 74°C, 79°C, and 85°C). In total, 72 VFC were measured representing the Maillard reaction and lipid degradation. Five VFC were impacted by a three-way interaction of OT × IT × layer (P ≤ 0.030). Two VFC were impacted by a two-way interaction of OT × IT (P ≤ 0.010). Sixteen VFC were impacted by a two-way interaction of OT × layer (P ≤ 0.050). Sixteen VFC were impacted by a two-way interaction of IT × layer (P ≤ 0.050). Twenty VFC were impacted by the main effect of layer (P ≤ 0.010). Eight VFC were impacted by the main effect of IT (P ≤ 0.050). Maillard compounds were formed primarily at steak surfaces, with a general increase in content with greater final IT, and OT to a lesser extent. Lipid-derived compounds were diverse. Methyl esters and aldehydes had lower contents at steak surfaces and were primarily found within the inner portions of steaks. Conversely, certain alcohols and ketones were more prominent at steak surfaces. Development of compounds among layers was also consistently influenced by IT and OT. It may be concluded that flavor-contributing compounds vary among cooked beef steaks at different depths and cookery temperatures. As a result, OT and final IT may be utilized to mediate the final volatile compound composition

    Similar works