Well-trained deep neural networks (DNNs) treat all test samples equally
during prediction. Adaptive DNN inference with early exiting leverages the
observation that some test examples can be easier to predict than others. This
paper presents EENet, a novel early-exiting scheduling framework for multi-exit
DNN models. Instead of having every sample go through all DNN layers during
prediction, EENet learns an early exit scheduler, which can intelligently
terminate the inference earlier for certain predictions, which the model has
high confidence of early exit. As opposed to previous early-exiting solutions
with heuristics-based methods, our EENet framework optimizes an early-exiting
policy to maximize model accuracy while satisfying the given per-sample average
inference budget. Extensive experiments are conducted on four computer vision
datasets (CIFAR-10, CIFAR-100, ImageNet, Cityscapes) and two NLP datasets
(SST-2, AgNews). The results demonstrate that the adaptive inference by EENet
can outperform the representative existing early exit techniques. We also
perform a detailed visualization analysis of the comparison results to
interpret the benefits of EENet