CURLY LEAF is required for the auxin-dependent regulation of 3-dimensional growth specification in Physcomitrium patens

Abstract

The no gametophores 4 (nog4-R) mutant cannot make the transition from 2-dimensional (2D) to 3-dimensional (3D) growth in Physcomitrium patens and forms side branch initials that are largely fated to become sporophyte-like structures. We describe the three different developmental trajectories adopted by the nog4-R mutant, all of which result in indeterminate growth and defects in cell division plane orientation. A candidate gene approach confirmed that the causative mutation resided in the CURLY LEAF gene, and we highlight a previously uncharacterized role for CURLY LEAF in maintaining auxin homeostasis in P. patens

    Similar works