Parsing patterns: emerging roles of tissue self-organization in health and disease

Abstract

Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns

    Similar works