Natural Clay Pyrophyllite Activation with Silver and Composite Characterization

Abstract

In this work, a hybrid pyrophyllite/AgNPs system was designed by mechanochemical activation of pyrophyllite, Al2Si4O 10(OH) 2. Tuning this system’s properties is especially important in terms of possible biomedical applications. The reaction was triggered by adding 2, 5, and 10wt% of silver in the form of AgNO3, indicating green synthesis of AgNPs. Thereby, the grinding time was adjusted from 20 to 320 minutes. The collected samples were analyzed by FTIR, XRD, SEM with EDX, TGA, DTA and PSD. The FTIR spectra of the pyrophyllite/AgNPs system showed the disappearance of some bands characteristic of pyrophyllite itself due to breaking of some bonds during the grinding, and the appearance of some new bands. SEM-EDS analysis confirmed that pyrophyllite structure changed during the mechanochemical treatment, indicating a homogeneous distribution of silver along the analyzed surface. PSD analysis showed that the average particle size distribution is approximately the same for all samples, despite the different wt% of silver. While XRD patterns of samples with 2 and 5 wt% of AgNO 3 did not show reflections originating from silver, the peak at 38.16˚ of the pyrophyllite sample milled for 20 minutes with 10 wt% of silver could be assigned to silver in the metal form. DTA curves of pyrophyllite/AgNO 3 samples milled for 20, 80 or 320 min had similar shapes for different silver content added. TGA curves of pyrophyllite/AgNO 3 samples milled for 20 min with 2, 5, and 10 wt% of silver showed a total weight loss of about 10% while for samples milled for 320 min reduced weight loss was observed due to the agglomeration of particles.Published in Bulletin of the Chemists and Technologistsof Bosnia and Herzegovina as Special Issue (2024)

    Similar works