Autonomous drone hunter operating by deep learning and all-onboard computations in GPS-denied environments

Abstract

This data repository hosts relevant data to our paper with the same name. Paper Abstract: This paper proposes a UAV platform that autonomously detects, hunts, and takes down other small UAVs in GPS-denied environments. The platform detects, tracks, and follows another drone within its sensor range using a pre-trained machine learning model. We collect and generate a 58,647-image dataset and use it to train a Tiny YOLO detection algorithm. This algorithm combined with a simple visual-servoing approach was validated on a physical platform. Our platform was able to successfully track and follow a target drone at an estimated speed of 1.5 m/s. Performance was limited by the detection algorithm’s 77% accuracy in cluttered environments and the frame rate of eight frames per second along with the field of view of the camera

    Similar works

    Full text

    thumbnail-image

    Available Versions