Few-shot learning (FSL) aims to develop a learning model with the ability to
generalize to new classes using a few support samples. For transductive FSL
tasks, prototype learning and label propagation methods are commonly employed.
Prototype methods generally first learn the representative prototypes from the
support set and then determine the labels of queries based on the metric
between query samples and prototypes. Label propagation methods try to
propagate the labels of support samples on the constructed graph encoding the
relationships between both support and query samples. This paper aims to
integrate these two principles together and develop an efficient and robust
transductive FSL approach, termed Prototype-based Soft-label Propagation
(PSLP). Specifically, we first estimate the soft-label presentation for each
query sample by leveraging prototypes. Then, we conduct soft-label propagation
on our learned query-support graph. Both steps are conducted progressively to
boost their respective performance. Moreover, to learn effective prototypes for
soft-label estimation as well as the desirable query-support graph for
soft-label propagation, we design a new joint message passing scheme to learn
sample presentation and relational graph jointly. Our PSLP method is
parameter-free and can be implemented very efficiently. On four popular
datasets, our method achieves competitive results on both balanced and
imbalanced settings compared to the state-of-the-art methods. The code will be
released upon acceptance