Concurrent Stochastic Lossy Channel Games

Abstract

Concurrent stochastic games are an important formalism for the rational verification of probabilistic multi-agent systems, which involves verifying whether a temporal logic property is satisfied in some or all game-theoretic equilibria of such systems. In this work, we study the rational verification of probabilistic multi-agent systems where agents can cooperate by communicating over unbounded lossy channels. To model such systems, we present concurrent stochastic lossy channel games (CSLCG) and employ an equilibrium concept from cooperative game theory known as the core, which is the most fundamental and widely studied cooperative equilibrium concept. Our main contribution is twofold. First, we show that the rational verification problem is undecidable for systems whose agents have almost-sure LTL objectives. Second, we provide a decidable fragment of such a class of objectives that subsumes almost-sure reachability and safety. Our techniques involve reductions to solving infinite-state zero-sum games with conjunctions of qualitative objectives. To the best of our knowledge, our result represents the first decidability result on the rational verification of stochastic multi-agent systems on infinite arenas.Comment: To appear at CSL 2024. Extended versio

    Similar works

    Full text

    thumbnail-image

    Available Versions