A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells

Abstract

We have performed a statistically designed multiparameter experiment using response surface methodology to determine the optimum deposition and anneal conditions for PECVD silicon-oxide and silicon-nitride films on Si solar cells. Our process includes a unique in situ hydrogen plasma treatment to promote bulk defect passivation independently of surface effects. Our goal has been to define a process to optimize cell performance by minimizing recombination while also providing an effective antireflection coating. Our initial results show that excellent emitter-surface passivation, approaching that of the best thermally grown oxides, can be obtained using a single-layer nitride coating whose refractive index is optimized for antireflection purposes. Use of the PECVD-nitride instead of a TiO{sub 2} ARC resulted in an 11% increase in output power

    Similar works