Deuterium pumping speed measurements on 77 K cryopanels and implications for D-T retention in neutral beam systems

Abstract

An upper limit for the pumping speed of deuterium on 77 K surfaces has been determined by in-situ pressure measurements in a TFTR neutral beam line pumped by 423 m/sup 2/ of LN/sub 2/-cooled cryopanels. The measurement has importance for estimating the tritium retention in the beam line following operation of the ion sources with tritium. No D/sub 2/ pumping was observed. An upper limit for D/sub 2/ pumping on 77 K surfaces of less than or equal to2.4 x 10/sup -7/ l/s cm/sup 2/ was determined, corresponding to a D/sub 2/ sticking coefficient of less than or equal to1.5 x 10/sup -8/. Based on the upper limit a D-T retention factor, equal to the ratio of retained D-T to D-T input, has been determined to be less than or equal to5 x 10/sup -3/. This upper limit for D-T retention bounds the tritium inventory within the beam line to a small fraction of the tritium throughput. Comparably small upper limits for hydrogenic sticking coefficients, of the order of 10/sup -6/ - 10/sup -10/, have been determined from a review of H/sub 2/O cryotrapping measurements at 77 K and from the physical adsorption studies of H/sub 2/ on H/sub 2/O at 4 K. 22 refs., 5 figs., 1 tab

    Similar works