Parametric studies on the load-deflection characteristics of hydraulic snubbers

Abstract

Hydraulic snubbers are extensively used in the nuclear power industry for supporting high energy piping systems subjected to dynamic loadings. These devices allow the piping system to displace freely under slowly applied loads, but lock up under sudden excitations. This paper presents the governing differential equations describing the hydro-mechanical mechanisms of a typical snubber. A finite difference computer code, SNUBER, was developed to solve these equations. Using the code, the load deflection characteristics of the unit were developed for a range of parameters of interest. The parameters included leakage orifice area, initial piston location, eyebolt clearance and reservoir pressures. The results include the load deflection characteristics for various combinations of the controlling parameters and some chamber pressure time history profiles. It is intended that the nonlinear characteristic of the snubbers be incorporated into a structural dynamic analysis program to allow prediction of the overall response of nuclear piping supported by these devices and subjected to a variety of loadings

    Similar works