Present techniques for measuring sound velocity in liquid metals have been limited by the use of transducers which cannot survive in extreme temperature conditions. These methods also require relatively long measurement times. An optical noncontacting method has been developed which may be used for extremely short experimental times and very high temperatures and pressures. This technique is being incorporated into an isobaric expansion apparatus in which a 1 mm diam wire sample in a high pressure argon gas environment is resistively heated to melt within a time period of only a few microseconds. Before instability of the liquid column occurs, thermal expansion, enthalpy, and temperature are measured. The addition of the sound velocity measurement permits a more complete determination of the thermophysical properties of the liquid metal