Predictive models based on sensitivity theory and their application to practical shielding problems

Abstract

Two new calculational models based on the use of cross-section sensitivity coefficients have been devised for calculating radiation transport in relatively simple shields. The two models, one an exponential model and the other a power model, have been applied, together with the traditional linear model, to 1- and 2-m-thick concrete-slab problems in which the water content, reinforcing-steel content, or composition of the concrete was varied. Comparing the results obtained with the three models with those obtained from exact one-dimensional discrete-ordinates transport calculations indicates that the exponential model, named the BEST model (for basic exponential shielding trend), is a particularly promising predictive tool for shielding problems dominated by exponential attenuation. When applied to a deep-penetration sodium problem, the BEST model also yields better results than do calculations based on second-order sensitivity theory

    Similar works