Birch's law and the properties of high temperature fluid metals

Abstract

By comparing acoustic velocities in fluid metals over a very wide range of densities we have established Birch's Law as an approximate representation over the entire liquid range. For a given liquid metal the acoustic velocity is close to linear in density, with a slope determined by the atomic weight. The measurements include isobaric expansion to less than half normal density, ultrasonics on molten metals at 1 atmosphere, and shock-melted metals to greater than twice normal density. We also find unusual behavior of the Gruneisen gamma, which can be explained in terms of simple fluid models. 15 refs

    Similar works