The front-end analog and digital signal processing electronics for the drift chambers of the Stanford Large Detector

Abstract

The front-end signal processing electronics for the drift-chambers of the Stanford Large Detector (SLD) at the Stanford Linear Collider is described. The system is implemented with printed-circuit boards which are shaped for direct mounting on the detector. Typically, a motherboard comprises 64 channels of transimpedance amplification and analog waveform sampling, A/D conversion, and associated control and readout circuitry. The loaded motherboard thus forms a processor which records low-level wave forms from 64 detector channels and transforms the information into a 64 k-byte serial data stream. In addition, the package performs calibration functions, measures leakage currents on the wires, and generates wire hit patterns for triggering purposes. The construction and operation of the electronic circuits utilizing monolithic, hybridized, and programmable components are discussed

    Similar works