Abstract

Titanium dioxide (TiO{sub 2}) is a photocatalyst for solar detoxification of water containing organic contaminants such as solvents, PCB's, dioxins, pesticides, and dyes. Unfortunately, the ultraviolet (UV) energy used by TiO{sub 2} ({lambda}<400 nm) only comprises about 4% of the solar spectrum. One way of enhancing the efficiency of solar detoxification technologies is to utilize a larger portion of the solar spectrum to initiate the Tio{sub 2}- catalyzed detoxification chemistry. Metalloporphyrins strongly absorb visible and near infrared radiation. By utilization of a process called photosensitization, adsorption of these dyes onto TiO{sub 2} can enable a much broader portion of the solar spectrum to be used. Photosensitization relies upon the ability of the dye molecule to absorb more of the solar energy than bare TiO{sub 2} and to interact electronically with the TiO{sub 2} surface in such a way as to initiate TiO{sub 2}-based redox photochemistry using the dye-absorbed energy. 16 refs., 7 figs

    Similar works