Inherent P2X7 Receptors Regulate Macrophage Functions during Inflammatory Diseases

Abstract

Macrophages are mononuclear phagocytes which derive either from blood-borne monocytes or reside as resident macrophages in peripheral (Kupffer cells of the liver, marginal zone macrophages of the spleen, alveolar macrophages of the lung) and central tissue (microglia). They occur as M1 (pro-inflammatory; classic) or M2 (anti-inflammatory; alternatively activated) phenotypes. Macrophages possess P2X7 receptors (Rs) which respond to high concentrations of extracellular ATP under pathological conditions by allowing the non-selective fluxes of cations (Na+, Ca2+, K+). Activation of P2X7Rs by still higher concentrations of ATP, especially after repetitive agonist application, leads to the opening of membrane pores permeable to ~900 Da molecules. For this effect an interaction of the P2X7R with a range of other membrane channels (e.g., P2X4R, transient receptor potential A1 [TRPA1], pannexin-1 hemichannel, ANO6 chloride channel) is required. Macrophagelocalized P2X7Rs have to be co-activated with the lipopolysaccharide-sensitive toll-like receptor 4 (TLR4) in order to induce the formation of the inflammasome 3 (NLRP3), which then activates the pro-interleukin-1 (pro-IL-1)-degrading caspase-1 to lead to IL-1 release. Moreover, inflammatory diseases (e.g., rheumatoid arthritis, Crohn’s disease, sepsis, etc.) are generated downstream of the P2X7R-induced upregulation of intracellular second messengers (e.g., phospholipase A2, p38 mitogen-activated kinase, and rho G proteins). In conclusion, P2X7Rs at macrophages appear to be important targets to preserve immune homeostasis with possible therapeutic consequences

    Similar works