Intelligent Knee Sleeves: A Real-time Multimodal Dataset for 3D Lower Body Motion Estimation Using Smart Textile

Abstract

The kinematics of human movements and locomotion are closely linked to the activation and contractions of muscles. To investigate this, we present a multimodal dataset with benchmarks collected using a novel pair of Intelligent Knee Sleeves (Texavie MarsWear Knee Sleeves) for human pose estimation. Our system utilizes synchronized datasets that comprise time-series data from the Knee Sleeves and the corresponding ground truth labels from the visualized motion capture camera system. We employ these to generate 3D human models solely based on the wearable data of individuals performing different activities. We demonstrate the effectiveness of this camera-free system and machine learning algorithms in the assessment of various movements and exercises, including extension to unseen exercises and individuals. The results show an average error of 7.21 degrees across all eight lower body joints when compared to the ground truth, indicating the effectiveness and reliability of the Knee Sleeve system for the prediction of different lower body joints beyond the knees. The results enable human pose estimation in a seamless manner without being limited by visual occlusion or the field of view of cameras. Our results show the potential of multimodal wearable sensing in a variety of applications from home fitness to sports, healthcare, and physical rehabilitation focusing on pose and movement estimation.Comment: Accepted by Thirty-seventh Conference on Neural Information Processing Systems (Neurips) D&B Trac

    Similar works

    Full text

    thumbnail-image

    Available Versions