Modeling femtosecond pulse propagation in optical fibers.

Abstract

Femtosecond pulse propagation in optical fibers requires consideration of higher-order nonlinear effects when implementing the non-linear Schroedinger equation. We show excellent agreement of our model with experimental results both for the temporal and phase features of the pulses. Ultrafast pulse propagation in optical fibers presents a number of challenges given the effect of nonlinearities which become important on such a short time scale. The modeling of femtosecond pulse propagation becomes, consequently, a harder task which has to account for all these effects. In this work, we have included higher order corrections in the non-linear Schroedinger equation and compared the numerical simulation results with experimental data. Our work, besides taking into account the temporal evolution of the pulse, keeps into account also the phase behavior of the electric field, which we compare with experimental results obtained with Frequency Resolved Optical Gating [l]. We also account for self-frequency shift of the pulse and obtain excellent agreement with the experimental results on the Raman shift

    Similar works