Search for new physics in high-mass diphoton events from proton-proton collisions at s\sqrt{s} = 13 TeV

Abstract

International audienceResults are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at s\sqrt{s} = 13 TeV. The data set was collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb1^{-1}. Events with a diphoton invariant mass greater than 500\GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1

    Similar works

    Full text

    thumbnail-image

    Available Versions