This paper focuses on the study of Laminar mix convection heat transfer of water-AL2O3 and water-CuO nanofluids whit temperature and nanoparticles concentration dependent thermophyscical properties in a rectangular shallow cavity was investigated numerically. Upper movable lid of the cavity was at a lower temperature compared to the bottom wall. Simulations were performed for Grashof numbers of 104 for Richardson numbers from 0.1 to 4.5, and nanoparticle volume fraction of 0.01-0.04. The two-dimensional governing equations were discretized using a finite volume method and SIMPLE algorithm. The model prediction for very low solid volume fraction were found to be in good agreement whit earlier numerical studies for a base fluid. It is shown that under a wide range of volume fraction of nanoparticles and different Richardson number, the enhancement of heat transfer will be evaluated. The Reynolds number varies due to variation of the Richardson number. Heat transfer was elevated by increasing the concentration of nanoparticles additionally. In this paper investigated the role of nanofluid variable properties in differentially heated enclosures and found that the prediction of heat