Iron (II) and Silicate Effects on Mineralization and Immobilzation of Actinides

Abstract

Abstract - The unique composition of the Yucca Mountain repository site, which contains large concentrations of silicate in an oxidative environment, has required extensive research into compound formation involving uranium and iron(II) under such conditions. The possibility of uranium leakage from within the containment vessels into the near-field ground water, as well as iron leaching from the vessel itself, necessitates study of the individual contributions of these elements for compound formation. By mimicking the known silicate concentration found in surrounding ground water and varying concentrations of both uranyl and iron(II), subsequent precipitation of uranyl silicate phases has shown evidence of iron(II) sorption to the available sites on the mineral surface. The mineralization seems to be driven by the formation of uranyl silicate, in contrast to iron(III)-control of precipitation in the oxidated system. Characterization of this system presented includes ICP-AES analysis as well as preliminary EDAX, XRD, and FT-I

    Similar works