Modified Rate-Theory Predictions in Comparison to Microstructural Data

Abstract

Standard rate theory methods have recently been combined with experimental microstructures to successfully reproduce measured swelling behavior in ternary steels around 400 C. Fit parameters have reasonable values except possibly for the recombination radius, R{sub c}, which can be larger than expected. Numerical simulations of void nucleation and growth reveal the importance additional recombination processes at unstable clusters. Such extra recombination may reduce the range of possible values for R{sub c}. A modified rate theory is presented here that includes the effect of these undetectably small defect clusters. The fit values for R{sub c} are not appreciably altered, as the modification has little effect on the model behavior in the late steady state. It slightly improves the predictions for early transient times, when the sink strength of stable voids and dislocations is relatively small. Standard rate theory successfully explains steady swelling behavior in high purity stainless steel

    Similar works