Activation Energy for Grain Growth in Bismuth Coatings

Abstract

The knowledge of both activation energy and diffusion coefficient is needed for a predictive processing of grain size in coatings. However, for metals as Bismuth there is insufficient information available in the literature for these parameters. To determine these values, a method is adopted wherein an examination of the grain size is conducted for coatings deposited isothermally. The exponent for grain growth with time is determined, thereby enabling quantification of the activation energy and diffusion coefficient. Bismuth coatings that range from 10 {micro}m to 1 mm thick are deposited using electron-beam evaporation onto temperature-controlled substrate surfaces of glass and lithium fluoride. The grain size of each coating is measured upon examination of the microstructure in cross-section using the intercept method. Ideal grain growth is observed over the experimental range of deposition temperatures examined from 317 to 491 K. The activation energy (Q) for grain growth in bismuth is fit as 0.47 eV {center_dot} atom{sup -1} with a diffusion coefficient (D{sub 0}) of 3.3 x 10{sup -4} cm{sup 2} {center_dot} sec{sup -1}

    Similar works