A RAPID SPECTROSCOPIC TECHNIQUE FOR DETERMINING THE POTENTIAL ALPHA ENERGY CONCENTRATION OF RADON DECAY PRODUCTS

Abstract

We consider the application of alpha spectroscopy to the rapid determination of the potential alpha energy concentration (PAEC) of radon decay products indoors. Two count totals are obtained after a single counting period. The PAEC is then estimated by a linear combination of the count totals, the two coefficients being determined by analysis of the dependence of the statistical and procedural errors on the equilibrium conditions and the sampling, delay, and counting times. For a total measurement time of 11 min, the procedural error is unlikely to exceed 20% for equilibrium conditions commonly found indoors; the statistical error is less than 20% at a PAEC of 0.005 WL, assuming a product of detector efficiency and flow rate of at least 1.0 l/min. An analysis is made of techniques based on a total alpha count, and the results are compared with those obtained with the rapid spectroscopic technique; the latter is clearly preferable when the measurement time does not exceed 15 min

    Similar works