Analysis of radiation damage in fusion-simulation neutron spectra

Abstract

Various parameters which are relevant to an understanding of radiation effects in metals have been evaluated utilizing available neutron spectrum information for several existing sources, e.g., EBRII, HFIR, and LAMPF, as well as the hypothetical spectrum at a fusion reactor first wall, and measured Li(d,n) spectra. Recoil energy distributions were calculated for several metals including Al, Cu, and Nb. The recoil energy range was divided into groups, and the fraction of recoils occurring in each energy group was compared with the fraction of the damage energy contributed by that group. From this comparison it was possible to conclude that the significant recoil range differs by about an order of magnitude between fission and fusion sources. The analysis further confirms that basic defect production characteristics depend upon the neutron spectrum, and that integral calculations of radiation-effect parameters do not provide a complete description of the dependence. This is equally true for comparisons between fusion-related spectra or fission-reactor spectra independently. Four recoil-dependent parameter functions which describe different aspects of radiation damage were used in the calculations. The relative effectiveness of neutron sources was found to depend upon the choice of parameter function. Fission-reactor spectra comparisons are relatively insensitive to the parameter functions used whereas spectra with an appreciable component of high-energy neutrons are much more sensitive. (auth

    Similar works