A Heterogeneous Spatial Model for Soil Carbon Mapping of the Contiguous United States Using VNIR Spectra

Abstract

The Rapid Carbon Assessment, conducted by the U.S. Department of Agriculture, was implemented in order to obtain a representative sample of soil organic carbon across the contiguous United States. In conjunction with a statistical model, the dataset allows for mapping of soil carbon prediction across the U.S., however there are two primary challenges to such an effort. First, there exists a large degree of heterogeneity in the data, whereby both the first and second moments of the data generating process seem to vary both spatially and for different land-use categories. Second, the majority of the sampled locations do not actually have lab measured values for soil organic carbon. Rather, visible and near-infrared (VNIR) spectra were measured at most locations, which act as a proxy to help predict carbon content. Thus, we develop a heterogeneous model to analyze this data that allows both the mean and the variance to vary as a function of space as well as land-use category, while incorporating VNIR spectra as covariates. After a cross-validation study that establishes the effectiveness of the model, we construct a complete map of soil organic carbon for the contiguous U.S. along with uncertainty quantification

    Similar works

    Full text

    thumbnail-image

    Available Versions