Probing reaction dynamics of transition-metal complexes in solution via time-resolved soft x-ray spectroscopy

Abstract

We report the first time-resolved soft x-ray measurements of solvated transition-metal complexes. L-edge spectroscopy directly probes dynamic changes in ligand-field splitting of 3d orbitals associated with the spin transition, and mediated by changes in ligand-bonding. We report the first time-resolved soft x-ray spectroscopy of solution-phase molecular dynamics. Changes in ligand-field splitting and spin-state populations in 3d orbitals of the Fe{sup II} complex are directly probed via transient absorption changes of the Fe L{sub 2} and L{sub 3} edges following photo-induced metal-to-ligand charge transfer. With the emergence of high-flux ultrafast soft x-ray sources, details on interplay between atomic structure, electronic states, and spin contributions will be revealed. Our experimental approach opens the door to femtosecond soft x-ray investigations of liquid phase chemistry that have previously been inaccessible

    Similar works