La mesure des propriétés du boson de Higgs et l'étalonnage temporel du détecteur CMS à l'aide de méthodes d'apprentissage automatique

Abstract

After the observation of a Higgs boson which is compatible with the predictions of the standard model (SM) of particle physics at the ATLAS and CMS detectors in 2012, the precise measurement of its properties is now one of the primary goals of high energy physics. The Higgs boson decaying into two photons (H → γγ decay channel) provides a fully reconstructed final state and its invariant mass peak can be measured with a very good mass resolution (around 1%). Consequently, despite the small branching ratio predicted by the SM (approximately 0.2%), H → γγ was one of the two most essential channels involved in the discovery of the Higgs boson together with its decay to four leptons. This PhD thesis establishes constraints on the Higgs boson anomalous couplings (AC) to gauge bosons. A multiclassifier based on a deep learning model is designed to use all possible ingredients of the H → γγ analyses to provide the most optimal separation between background, SM production and AC production of the Higgs boson.Significant backgrounds to the H → γγ analysis originate from QCD-induced production of diphoton, or diphoton-like, pairs. Processes producing only one or no photon contribute significantly to the contamination of signal if other particles are misidentified as photons. As such, a precise estimation of the background emerging from misidentified photons is necessary to reach an optimal signal extraction. This thesis describes a novel method relying on advanced machine learning models named generative adversarial networks or GAN to generate misidentified photons and improve the description of such backgrounds from data control regions.Furthermore, the LHC will undergo a High Luminosity (HL) upgrade, delivering around ten times more integrated luminosity with the downside of imposing harsher conditions on the CMS detector. An accompanying upgrade of the CMS detector (Phase II upgrade) is foreseen to not only cope with these harsher conditions but also significantly improve the performance of the detector. One of the most critical aspects of this upgrade is the ability to tag events with very high timing resolution, which will also improve the study of the H → γγ decay channel. This thesis provides a contribution to the timing upgrade of the CMS detector, particularly to the fast monitoring and calibration of the high-precision clock distribution.Après l'observation du boson de Higgs par les expériences ATLAS et CMS en 2012, les mesures de précision de ses propriétés sont aujourd'hui un des enjeux majeurs de la physique des hautes énergies et du Large Hadron Collider (LHC). En effet, il s'agit de tester la compatibilité de ce boson avec celui attendu par le modèle standard (MS) de la physique des particules. Dans son canal de désintégration en deux photons (H → γγ), le boson de Higgs est entièrement reconstruit, le pic de masse correspondant pouvant être mesuré avec une très bonne résolution expérimentale (autour de 1%). En conséquence, en dépit d'un taux d'embranchement très faible dans le MS (d’environ 0.2%), le canal H → γγ fut l'un des deux canaux ayant permis la découverte du boson de Higgs, le canal de désintégration en quatre leptons étant le second. Cette thèse pose des contraintes sur couplages anormaux (CA) du boson de Higgs avec des bosons de jauge. Un classificateur en multiples catégories basé sur des méthodes d'apprentissage profond (deep learning) est développé pour utiliser l'ensemble des informations disponibles dans l'analyse H → γγ et pour fournir la meilleure séparation possible entre le bruit de fond, les différents modes de production du boson de Higgs du MS et les productions CA du boson de Higgs.Un bruit de fond conséquent pour les analyses H → γγ vient des processus QCD produisant une paire diphoton. Même les événements avec seulement un, voire aucun photon, contribuent grandement à la contamination du signal si d’autres particules sont faussement identifiées comme des photons. De ce fait, une estimation précise du bruit de fond émergeant de ces photons mal identifiés est nécessaire pour atteindre une extraction optimale du signal. Cette thèse décrit une nouvelle méthode pour l’estimation précise du bruit de fond. Cette méthode s’appuie sur des modèles d'apprentissage profond avancés appelés réseaux antagonistes génératifs (ou GAN), pour générer des photons mal identifiés et améliorer la description du bruit de fond associé grâce à des régions de contrôle définis dans les données.D'autre part, le LHC subira dans les prochaines années une jouvence permettant d'augmenter sa luminosité (High Luminosity LHC, HL-LHC) d'un facteur 10 environ. En contrepartie, les conditions de prise de données seront beaucoup plus difficiles. En conséquence, le détecteur CMS sera également amélioré (jouvence Phase II) pour faire face à ces conditions. La possibilité d'associer à chaque objet reconstruit dans la collision un temps mesuré avec une grande précision constitue un enjeu majeur qui permettra d'améliorer la qualité des différentes mesures réalisées dans le canal H → γγ. Cette thèse fournit une contribution aux mesures de temps de haute résolution envisagées par CMS, en particulier sur la surveillance et la calibration ultra rapide du système de distribution d'horlog

    Similar works

    Full text

    thumbnail-image

    Available Versions