INCREASE IN SURFACE AIR TEMPERATURE AS A RESULT OF CONVECTIVE AEROSOL REMOVEMENT TO DESERT TERRITORIES

Abstract

<p><strong>Abstract</strong></p><p>We modified the mathematical model of the influence of convective aerosol removal (CR) from desert surfaces on near-surface air temperature, which we previously developed for "ideal" conditions (the absence of vegetation cover and the presence of wind loads - calm weather conditions) [1, 30].</p><p>During field experiments to validate the model, a significant influence of wind and vegetation cover on the thermal effect of convective aerosol removal (CR) was revealed, causing significant discrepancies between model and experimental data. Based on the obtained empirical dependences of the thermal impact of CR F on wind speed and the general projective cover of vegetation, as well as changes in some parameters of the model of convective aerosol removal (MCR), the MCR-2 version was developed taking into account real operating conditions.</p><p>According to the results of the implementation of MCR -2 for the territory of the Southern Aral Sea region in the warm period of the year (May-October) in desert zones, an increase in temperature in the near-surface layer is noted, on average, by 3.5 ° C, as a result of convective removal of aerosol. This value is very significant, which indicates the need to take into account the convective removal of aerosol in prognostic and climate models of surface air temperature in desert areas.</p><p><strong>References:</strong></p><ol><li>Arushanov M. L., Tleumuratova B. S., Narimbetov B. ZH. Aerosol forcing of surface temperature //Hydrometeorology and environmental monitoring, №1. – 2022. – P. 23-33. </li><li>Vager B. G., Utkina Z. M. Modeling the influence of the Aral Sea on the processes of moisture transfer in the boundary layer of the atmosphere // Pr. GGО, v. 468. – 1982. – P. 56 – 65. </li><li>Vargaftik N. B. Handbook of thermophysical properties of gases and liquids. – М.: Nauka. – 1972. – 720 p.</li><li>Gledzer E. B., Grandberg I. G., Chehеtиаni О. G. Convective aerosol flows near the soil surface // Reports RАS, t. 426, №3. – 2009 – P. 380-385.</li><li>Gorchakov G. I. Shukurov K. A. Fluctuations in Submicron Aerosol Concentration under Convective Conditions // Izvestiya RАS, Physics of the atmosphere and ocean, t. 39, №1. – 2003. –  P. 885-97.</li><li> Grandberg I. G. Physical Mechanisms and Ecological Problems of Pollution of the Atmospheric Boundary Layer over Inhomogeneous Surfaces / Doctoral dissertation // Institute of Atmospheric Physics nam. A. M. Obuhova RAS. – М.: 2009. – 339 p. </li><li>Zolotokrylin A, N. Climatic desertification. – М.: Nauka, 2003. – 246 p. </li><li>Kondratev K.Y., Ivlevв L. S. On the impact of anthropogenic aerosol on climate // Reports RАS, t. 340. №1. –1995 – P. 98-100.</li><li>Latyshev A. V., Yushkanov А. А. Analytical solution of the model BGK-Boltzmann equation in the problem of temperature jump with energy accommodation taken into account // Math modeling. – 1992. – P. 61-66. </li><li>Semenov O. E., Zshapov А. P., Galeeva О. S., Idrisova V. P. Wind removal and sand-salt fallout from the dried part of the bottom of the Aral Sea //Arid ecosystems. – t. 12. – № 29. – 2006. – P. 42-47. </li><li>Subbotina О. I., Chanysheva S. G.  The climate of the Aral Sea region. – Tashkent: NIGMI, 2006. – 170 p. </li><li>Tleumuratova B. S. Mathematical modeling of the impact of transformations of the South Aral Sea ecosystem on soil and climatic conditions / Doctoral dissertation // NIGMI. –  Ташкент 2018. – 210 p. </li><li>Tleumuratova B. S. Mathematical modeling of aerosol transport in the lower layers of the atmosphere / Phd dissertation // NIGMI. – Ташкент: 2004. – 138p. </li><li>Fedorov V. D. Gilmanov T. G. Ecology.  М.: МGU, 1980, 464 p.</li><li>Harlow F. Kh. Numerical particle in cell method for hydrodynamics problems. // Computational methods in hydrodynamics.  M.: Mir. – 1967. – 460 p. </li><li>Chub V. Е., Chanysheva S. G., Nikulina S. P., Spektorman Т. Yu., Subbotina О. I. Development of regional climate scenarios. Information on the fulfillment by Uzbekistan of its obligations under the UN Convention on Climate Change // Bulletin №1. – Taskent: SANIGMI, 1999. –  P. 5-14. </li><li>Zhukin Е. R., Malay N. V., Shulimanova Z. L. Molecular heat exchange with a gaseous medium, a strongly heated stationary solid moderately large spherical particle // Scientific Gazette BELGU, v. 29, №23(142).  2012 –  P. 86-92</li><li>Yalamov Yu. I., Poddoskin A. B., Yushkanov A. A. On the boundary conditions in the flow of an inhomogeneously heated gas around a spherical surface of small curvature // Reports of the USSR AS, v. 254. – 1980. –. P. 343-346. </li><li>Akhlaq M., Sheltami T. R., Mouftah H. T. A review of techniques and technologies for sand and dust storm detection //Reviews in Environmental Science and Bio/Technology, Т. 11. – 2012. – P. 305-322.</li><li>Alfaro S. C., Gomes L. Modeling Mineral Aerosol Production by Wind Erosion: Emission Intensities and Aerosol Size Distributions in Source Areas // J. Geophys. Res., V.106. –  2001. – P. 18075-18089.</li><li>Amgalan, G., Liu, G. R., Kuo, T. H., & Tang-Huang, L. Correlation between dust events in Mongolia and surface wind and precipitation // Terrestrial, Atmospheric and Oceanic Sciences, v. 28, №1 – 2017. – P. 23-32. </li><li>Awadh, S. M. Impact of North African Sand and Dust Storms on the Middle East Using Iraq as an Example: Causes, Sources, and Mitigation // Atmosphere, 14(1). 2023. – P.  3-24. </li><li>Lu Н., Shao Y. Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications // Env. Mоdeling & Software, №16. – 2001. – Р. 233–249.</li><li>Owen R. P. Saltation of uniform grains in air //J. Fluid Mech., N20. – 1964. – Р. 225–242.</li><li>Owen R. P. Saltation of uniform grains in air //J. Fluid Mech., N20. – 1964. – Р. 225–242.</li><li>Shao Y. et al. Dust cycle: An emerging core theme in Earth system science //Aeolian Research, t. 2, №. 4. – 2011– С. 181-204.</li><li>Shao, Y., M. Raupach R., Findlater P. A. The Effect of Saltation and Bombardment on the Entrainment of Dust by Wind // J. Geophys. Res., v.98. – 1993. – P.12719-12726.</li><li>Shi, L., Zhang, J., Yao, F., Zhang, D., & Guo, H. (2020). Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages. // Atmospheric Environment, volume 222. – 2019. – P. 117-127.</li><li>Sorek-Hamer M. et.  al. Classification of dust days by satellite remotely sensed aerosol products //International journal of remote sensing. – Т. 34, №. 8. –2013. – С.  2672-2688.</li><li>Tleumuratova B. S., Narymbetov B. Zh. Convective Aerosol Transport in Desert Zones as a Factor of Increasing Air Temperature //Arid ecosystems, vol. 28, No. 1(90). – 2022 – P. 11–19.</li></ol&gt

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/05/2024