Recent camouflaged object detection (COD) attempts to segment objects
visually blended into their surroundings, which is extremely complex and
difficult in real-world scenarios. Apart from the high intrinsic similarity
between camouflaged objects and their background, objects are usually diverse
in scale, fuzzy in appearance, and even severely occluded. To this end, we
propose an effective unified collaborative pyramid network which mimics human
behavior when observing vague images and videos, \textit{i.e.}, zooming in and
out. Specifically, our approach employs the zooming strategy to learn
discriminative mixed-scale semantics by the multi-head scale integration and
rich granularity perception units, which are designed to fully explore
imperceptible clues between candidate objects and background surroundings. The
former's intrinsic multi-head aggregation provides more diverse visual
patterns. The latter's routing mechanism can effectively propagate inter-frame
difference in spatiotemporal scenarios and adaptively ignore static
representations. They provides a solid foundation for realizing a unified
architecture for static and dynamic COD. Moreover, considering the uncertainty
and ambiguity derived from indistinguishable textures, we construct a simple
yet effective regularization, uncertainty awareness loss, to encourage
predictions with higher confidence in candidate regions. Our highly
task-friendly framework consistently outperforms existing state-of-the-art
methods in image and video COD benchmarks. The code will be available at
\url{https://github.com/lartpang/ZoomNeXt}.Comment: Extensions to the conference version: arXiv:2203.02688; Fixed some
word error