Quantum error suppression with subgroup stabilisation projectors

Abstract

Quantum state purification is the functionality that, given multiple copies of an unknown state, outputs a state with increased purity. This is an essential building block for near- and middle-term quantum ecosystems before the availability of full fault tolerance, where one may want to suppress errors not only in expectation values but also in quantum states. We propose an effective state purification gadget with a moderate quantum overhead by projecting MM noisy quantum inputs to their symmetric subspace defined by a set of projectors forming a symmetric subgroup with order MM. Our method, applied in every short evolution over MM redundant copies of noisy states, can suppress both coherent and stochastic errors by a factor of 1/M1/M. This reduces the circuit implementation cost MM times smaller than the state projection to the full symmetric subspace proposed more than two decades ago by Barenco et al. We also show that our gadget purifies the depolarised inputs with probability pp to asymptotically O(p2)O\left(p^{2}\right) with an optimal choice of MM when pp is small. Our method provides flexible choices of state purification depending on the hardware restrictions before fully fault-tolerant computing is available. Our method may also find its application in designing robust verification protocols for quantum outputs

    Similar works