Estimating Post-Synaptic Effects for Online Training of Feed-Forward SNNs

Abstract

Facilitating online learning in spiking neural networks (SNNs) is a key step in developing event-based models that can adapt to changing environments and learn from continuous data streams in real-time. Although forward-mode differentiation enables online learning, its computational requirements restrict scalability. This is typically addressed through approximations that limit learning in deep models. In this study, we propose Online Training with Postsynaptic Estimates (OTPE) for training feed-forward SNNs, which approximates Real-Time Recurrent Learning (RTRL) by incorporating temporal dynamics not captured by current approximations, such as Online Training Through Time (OTTT) and Online Spatio-Temporal Learning (OSTL). We show improved scaling for multi-layer networks using a novel approximation of temporal effects on the subsequent layer's activity. This approximation incurs minimal overhead in the time and space complexity compared to similar algorithms, and the calculation of temporal effects remains local to each layer. We characterize the learning performance of our proposed algorithms on multiple SNN model configurations for rate-based and time-based encoding. OTPE exhibits the highest directional alignment to exact gradients, calculated with backpropagation through time (BPTT), in deep networks and, on time-based encoding, outperforms other approximate methods. We also observe sizeable gains in average performance over similar algorithms in offline training of Spiking Heidelberg Digits with equivalent hyper-parameters (OTTT/OSTL - 70.5%; OTPE - 75.2%; BPTT - 78.1%)

    Similar works

    Full text

    thumbnail-image

    Available Versions